In nature, submarine slope failures usually carry thousands of cubic-meters of sediments across extremely long distances and cause tsunamis and damages to offshore structures. This paper uses the granular column collapse experiment to investigate the effect of slope angle on the runout behavior of submarine granular landslides for different initial volumes. A two-dimensional coupled lattice Boltzman and discrete element method (LBM-DEM) approach is adopted for numerically modeling the granular column collapse. Columns with four different slope angles and six different volumes are modelled under both dry and submerged conditions. The effects of hydrodynamic interactions, including the generation of excess pore pressures, hydroplaning, and drag forces and formation of turbulent vortices, are used to explain the difference in the runout behavior of the submerged columns compared to the dry columns. The results show that at any given slope angle, there is a threshold volume above which the submerged columns have a larger final runout compared to their dry counterpart, and this threshold volume decreases with slope angle.